Stimulation of NADPH oxidase by oxidized low-density lipoprotein induces proliferation of human vascular endothelial cells.

نویسندگان

  • A Heinloth
  • K Heermeier
  • U Raff
  • C Wanner
  • J Galle
چکیده

Oxidized low-density lipoprotein (OxLDL) exerts proliferation and apoptosis in vascular cells, depending on its concentration and the duration of exposure. Recent studies indicate that [O(2)](-) is involved in cell cycle regulation and that OxLDL stimulates endothelial cells to produce [O(2)](-). This study examined the role of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase as a potential source for [O(2)](-) in the proliferation-inducing activity of OxLDL in cultured human umbilical vein endothelial cells (HUVEC). Human LDL was oxidized by Cu(++), and proliferation of HUVEC was detected by 3H-thymidine incorporation. OxLDL (5 microg/ml) caused an increase in proliferation of HUVEC of 250 to 300%. OxLDL-induced proliferation was blocked by addition of the antioxidants superoxide dismutase and catalase, suggesting that enhanced [O(2)](-) formation was involved. Diphenylene iodonium (DPI, 1 microM), an inhibitor of NADPH oxidase, also prevented OxLDL-induced proliferation of HUVEC, indicating that NADPH oxidase was the source for enhanced [O(2)](-) formation. The OxLDL effect was mimicked by lysophosphatidylcholine (LPC, 10 microM), a compound formed during oxidation of LDL. LPC-induced proliferation was also prevented by coincubation with DPI. Treatment of HUVEC with [O(2)](-) generated by the xanthine/xanthine oxidase reaction resulted in proliferation as did treatment with OxLDL. As expected, this stimulation could not be blocked by DPI. With the use of the cytochrome c-assay, it was demonstrated that OxLDL and LPC enhanced [O(2)](-) formation in HUVEC (by factor 3.2 and by factor 3.5, respectively). Supporting the assumption that NADPH oxidase was the enzyme responsible for [O(2)](-) formation, cells transfected with antisense oligonucleotides for NADPH oxidase showed a significantly reduced [O(2)](-) formation after stimulation with OxLDL and LPC. OxLDL and its compound LPC induce proliferation of HUVEC through activation of NADPH oxidase. The active NADPH oxidase generates [O(2)](-), which mediates the proliferative effects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells

Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Spironolactone Inhibits NADPH Oxidase-Mediated Oxidative Stress and Dysregulation of the Endothelial NO Synthase in Human Endothelial Cells

Accumulating evidence indicates that aldosterone plays a critical role in the mediation of oxidative stress and vascular damage. NADPH oxidase has been recognized as a major source of oxidative stress in vasculature. However, the relation between NADPH oxidase in aldosterone-mediated oxidative stress in endothelial cells remains to be ascertained. The present study aimed to investigate the rel...

متن کامل

Dual effect of oxidized LDL on cell cycle in human endothelial cells through oxidative stress.

BACKGROUND Oxidized low-density lipoprotein (OxLDL) exerts proliferation and apoptosis in vascular cells, depending on its concentration and the exposure time. Various steps in the cell cycle and in the apoptotic signaling cascade are modulated by O2-, and OxLDL stimulates vascular O2- formation. Here we studied the role of NADPH oxidase, a potential source for O2- formation after OxLDL stimula...

متن کامل

GroEL1, a heat shock protein 60 of Chlamydia pneumoniae, induces lectin-like oxidized low-density lipoprotein receptor 1 expression in endothelial cells and enhances atherogenesis in hypercholesterolemic rabbits.

Lectin-like oxidized low-density lipoprotein receptor 1 (LOX-1) plays a major role in oxidized low-density lipoprotein-induced vascular inflammation. Chlamydia pneumoniae has been found in atherosclerotic lesions and is related to atherosclerotic pathogenesis, although its specific mechanism remains unknown. This study was conducted to investigate the mechanisms of LOX-1 expression in GroEL1 (a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 11 10  شماره 

صفحات  -

تاریخ انتشار 2000